
24 570684 Ch19.qxd 3/31/04 3:00 PM Page 244

244 Part III: Giving Your Programs the Ability to Run Amok

Using switch involves creating a complex structure that includes the case,
break, and default keywords. Here’s how it may look:

switch(choice)
{

case item1:
statement(s);
break;

case item2:
case item3:

statement(s);
break;

default:
statement(s);

}

choice must be a variable. It can be a key typed at the keyboard, a value
returned from the mouse or joystick, or some other interesting number or
character the program has to evaluate.

After the case keyword come various items; item1, item2, item3, and so on
are the various items that choice can be. Each one is a constant, either a char­
acter or a value; they cannot be variables. The case line ends in a colon, not in a
semicolon.

Belonging to each case item are one or more statements. The program exe­
cutes these statements when item matches the choice that switch is making —
like an if statement match. The statements are not enclosed in curly braces.
The statements are also optional. (More on that in a second.)

The last statement in a group of case statements is typically a break com­
mand. Without the break there, the program keeps working its way through
the next case statement.

The last item in the switch structure is default. It contains the statements
to be executed when no match occurs — like the final else in an if-else
structure. The default statements are executed no matter what (unless you
break out of the structure earlier).

The most important thing to remember about switch-case is that the pro­
gram always walks through the entire thing unless you put a break in there
when you want it to stop. For example, consider this program snippet:

switch(key)
{

case ‘A’:
printf(“The A key.\n”);
break;

